扩展型博弈 Extensive Form Games

2021/11/01 GameTheory math 共 8449 字,约 25 分钟

介绍扩展型博弈的基础知识。

扩展型博弈 Extensive Form Games

表示形式—— 博弈树

使用树状图来表示行动的次序和执行动作时的信息状态

image-20221108213858770

  • 图中有两个参与者 ,进行了两个阶段的博弈

  • 结点:表示博弈的状态,
    • 根节点:博弈的起点,玩家进行决策。关于博弈怎么开始,博弈的顺序,可以有预定的顺序也可以通过掷色子、投硬币决定等。
    • 非叶子结点:决策结点:表示这个时候哪个博弈玩家做出决策。**
    • 叶子结点:代表每个玩家在此时的收益。收益只存在于叶子结点
  • 虚线框:信息集 ,同一信息集下可以执行的策略是一致的

  • 实线、边:在此信息集下可以选择的策略,同一信息集下可以执行的策略是一致的

  • 路径:从根结点到当前决策结点的路径中经过的决策的序列(有序集)

信息集 information set

以上虚线框就代表一个信息集。简单来说,虚线框下面的人不知道虚线框里的信息。也就是下一个玩家并不知道前一个玩家干了啥

image-20221108215753866

上图是一个二人单步行动的博弈。玩家P1 有两个可选行动,玩家P2有三个可选行动。P1先执行动作,P2后执行动作。收益是零和的,表示P2的收益,也就是P1的损失。

上图a和b的区别就只有信息集的不同。在图a中,P2的两个决策结点在同一个虚线框中,表示P2在决策的时候并不知道P1选择的动作及结果,即P2在决策并没有获得额外信息。 在图b中,P2的决策结点在不同的虚线框中,因此P2观察到了P1选择了哪个行动,也就是从根节点到当前决策结点的路径是P2所知道的,此时P2有着完美信息。

完美信息与不完美信息 上图b清楚地表示了参与者1先动,参与者2观察到参与者1的行动。然而,有些博弈并不是这样,如图a所示,参与者并不是一直能观察到另一 个人的选择(例如,同时行动或者行动被隐藏)。

信息集是决策节点的组合: 1、每个节点都属于一个参与者。 2、参与无法区分信息集里的多个节点。也就是说:如果信息集有多个节点,信息集所属的参与者就不知道能往哪个节点移动。

完美信息的博弈是指在博弈的任何阶段,每个参与者都清楚博弈之前发生的所有行动,也即每个信息集都是一个单元素集合。 没有完美信息的博弈就是不完美信息博弈。

博弈树的公理化表述

img

扩展性博弈研究范围的逐步扩展

二人零和单步 —— 二人非零和单步——多人非零和单步

二人零和多步——二人非零和多步——多人非零和多步

  • 参与者:二——多

  • 行动:单步——多步,有限——无限

  • 收益:零和——非零和

有限二人零和多步动态博弈

有限: 时间序列上有限 ,有中止结点

二人:两个参与者

零和:收益和为0

多步:多次采取行动

动态:有着信息集的概念,所谓的动态博弈,就体现在信息集的不唯一

1 feedback

图示

image-20221108222428010

image-20221108222013016

如上图2.8 所示的博弈为二人零和 feed back 博弈,需要满足两个条件:

  1. 每个参与者都有当前博弈阶段的完美信息。

    从图中来看就是信息集都在同一层级,不会出现图2.7左边信息集跨越不同博弈阶段的情况;

  2. 每个阶段的博弈,后一玩家得信息集的结点不能来自前一玩家不同信息集结点的分支。

    从图中来看就是,后面的信息集是从前一玩家的单个信息集延申出来的,如同图2.8所示,而不是2.7右边产生交叉的样子。

所以形如2.8所示的博弈树就是feedback型博弈,这样定义的目的是在之后的剪枝操作能够完全落下去。

求解saddle point 的方法

从最后的叶子结点,也就是最后一层开始,求解这一单步策略交互的 鞍点均衡策略 ,计算收益值。将这一步的博弈剪枝操作,剪下来,用计算的均衡收益替换掉这个博弈树。

也就是将k步的博弈转换为k个1步的博弈。

2 openloop

图示

image-20221109093728622

如上图所示,在博弈的每个阶段,所有决策结点都在同一个信息集中,这是一个完全的不完美信息博弈,也就是博弈的任何阶段,每个参与者都不清楚博弈之前发生的行动,这个时候也就没有任何额外的信息,其效果相当于一个静态博弈。

这种对于每个参与者每个阶段都只有一个信息集的博弈称之为 openloop型的扩展性博弈。

求解方法

由于信息集没有提供任何额外信息,其决策效果等同于博弈,所以可以将其多阶段的决策进行组合转换为一个单阶段的静态博弈。

如将上图的openloop型博弈进行转换得到的标准型博弈矩阵如下,然后再求解其鞍点即可。

image-20221109094357324

N 人博弈

定义 Definition 3.10 extensive form tree structure

image-20221109104003800

image-20221109104009233

Definition 3.10 An extensive form of an N-person nonzero-sum finite game without chan moves is a tree structure with

  1. a specific vertex indicating ==the starting point of the game==
  2. $N $ cost functions , each one assigning a real number to each terminal vertex of the tree,where the$ i$ th cost dunction determines the loss to be incurred to $P_i$。
  3. a partition of the nodes of the tree into $N$ player sets
  4. a subpartition of each player set into information sets ${ \eta_j^i}$,such that ==the same number of branches emanates from every node belonging to the same information set== and ==no node follows another node in the same information set== .

图示 Figure3.1

image-20221109104924848

Two typical nonzero-sum finite games in extensive form are depicted in Fig. 3.1.

The first one represents a 3-player single act nonzero sum finite game in extensive form in which the information sets of the players are such that both P2 and P3 have access to the action of P1.

左边的图是三人单步博弈,P2,P3在决策结点都知道P1所采取的行动,但P3在决策的时候只知道P1的行动而并不知道P2的决策内容

The second extensive form of Fig. 3.1, on the other hand, represents a 2-player multi-act nonzero-sum fnite game in which P1 acts twice and P2 only once.

右边的图是二人多步博弈,其中P1有两次行动。在P2进行决策的时候并不知道P1的行动,P1第二次进行决策时知道自己第一步的行动但不知道P2的行动。

In both extensive formns, theset of alternatives for each player is the same at all information sets and it consise of two elements.

The outcome corresponding to each possible path is denotes by an ordered N-tuple of numbers $(a’ …. aN)$, where$ N $stands for the number of players and a’ stands for the corresponding cost to $P_i$.

单步博弈

图示 Figure3.2 3.3

image-20221109110343278

上图时二人单步博弈,P1先行动P2后行动,P1有3个可选择行动,P2有2个可选择行动。

重点关注一下信息集,在P2进行决策时候,如果P1选择行动L,那么P2在决策时是能够观察这个信息的;但如果P1选择行动M/R,这时候P2就不能确定是哪个,也就是这时候P2不知道P1选的是M/R,只知道P1没有选择L。

image-20221109112432634

上图中三个差别就是在信息集的区别,显然,2和3与1相比,有着更多的信息。我们称博弈1信息低于2,3。而2,3之间并没有这种关系。

实际上,我们有博弈之间信息集“低于”的定义如下。

Definition 3.14 inferior

image-20221109112916259

Definition 3.14 Let $I$ and $II$ be two single-act $N$-person games in extensive form ,and further let $ \Gamma_{\mathrm{I}}^{i} $ and $ \Gamma_{\mathrm{II}}^{i } $ denote the strategy sets of $P_i(i \in N)$ in $I$ and $II$ ,respectively. Then ,$I $ is said to be ==informationally inferior== to $II$ if $ \Gamma_{\mathrm{I}}^{i} \subseteq \Gamma_{\mathrm{I}I}^{i}$ for all $i \in N$,with strict inclusion for at least one $i$.

两个博弈在均衡关系有以下定理。

Proposition 3.7 Let $I$ be an $N$-person single-act game that informationally inferior to some other single-act $N$-person game ,say $II$. Then

  1. any Nash equilibrium solution of $I$ also constitues a Nash equilibrium solution for $II$,
  2. if ${\gamma^1,\cdots,\gamma^N}$is a Nash equilibrium solution of $II$ so that $\gamma^i \in \Gamma^i_I$ for all $i \in N$ ,then it also constitues a Nash equilibrium solution for $I$

ladder-nested

定义 Definition 3.15 nested/ladder-nested

Definition 3.15

In an extensive form of a single act nonzero-sum finite game with a fixed order of play, a player $P_i$ is said to be a ==precedent== of another player $P_j$ if the former is situated closet to the vertex of the tree than the latter. The extensive forrm is said to be ==nested== if each player has access to thei nformation acquired by all his precedents.

If, furthermore, the only diference(if any) between the information available to a player ($P_i$) and his closest (immediate) precedent (say $P_i - 1$) involves only the actions of $Pi- 1$, and only at those nodes corresponding to the branches of the tree emanating from singleton information sets of $P_i- 1$, and this so for all players, the extensiuve form is said to be l==adder-nested==.

A single- act nonzero-sum finite gameis said to be nested(respectively, ladder-nested) if it admits an extensive form that is nested (respectively, ladder-nested).

17:Note that in 2-person single-act games the concepts of “nestednes” and “ladder-nstetes” coincide, and every extensive form is, by defnitin, ldder-nested

图示

image-20221109163738693

Remark 3.7

The single act extensive forms of Figs. 3.1(a) and 3.2 are both ladder-nested.

If the extensive form of Fig. 3.1(a) is modified so that both nodes of P2 are included in the same information set, then it is only nested, but not ladder-nested, since P3 can differentiate between different actions of P1 but P2 cannot.

Finally, if the extensive form of Fig.3.1(a) is modified so that this time P3 has a single information set (see Fig. 3.4(a)), then the resulting extensive form becomes non-nested, since then even though P2 is a precedent of P3 he actually knows more than P3 does.

The single-act game that this extensive form describes is, however, nested since it also admits the extensive form description depicted in Fig. 3.4(b).

image-20221109163338036

One advantage of dealing with ladder-nested extensive forms is that they can recursively be decomposed into simpler tree structures which are basically static in nature. This enables one to obtain a class of Nash equilibria of such games recursively, by solving static games at each step of the recursive procedure. Before providing the details of this recursive procedure, let us introduce some terminology.

子集定义 Definition 3.16

image-20221109164846357

Definition 3.16

For a given single- act dynamic game in nested extensive forrm (say, $I$), let $\eta$ denote a singleton information set of $P_i$’s immediate follower (say $P_j$); consider the part of the tree structure of $I$, which is ==cut off== at $\eta$, has $\eta$ as its vertex and has as immediate branches only those that enter into that inforrmation set of $P_j$.

Then, this tree structure is called ==a sub-extensive form of$ I$==. (Here, we adopt the convention that the starting vertex of the original extensive form is the singleton inforrmation set of the first-acting player. )

拆解1 将ladder-nested 拆解为静态的

Definition 3.17

A sub-extensive form of a nested extensive form of a single-act game is ==static== if every player appearing in this tree structure has a single information set.

图示:

Remark 3.8 The single act game depicted in Fig3.2 admits two sub-extensive forms which are as follows:

image-20221109221313819

The extensive form of Fig. 3.1(a), on the other hand, admits a total of for sub-extensive forms which we do not display here. It should be noted that each sub-extensive form is itself an extensive form describing a simpler game. The first one displayed above describes a degenerate 2-player game in which P1 has only one alternative. The second one again describes a 2-player game in which the players each have two alternatives. Both of these sub-extensive forms will be called ==static== since the first one is basically a one player game and the second one describes a static 2-player game.

也就是说可以对信息集进行分解,将梯形结构拆解为简单的静态博弈。

下面给出一个例子

image-20221109222529656

拆解2 将nested拆解为动态的 Definition 3.19

image-20221109222745309

Definition 3.19 A nested extensive (or sub-extensive) form of a single-act game is said to be ==undecomposable== if it does not admit any simpler sub-extensive form. It is said to be ==dynamic==, if at least one of the players has more than one information set.

图示:

image-20221109223013705

N人非零和feedback型的扩展型

定义 Definition 3.21

image-20221109100556763

Definition 3.21 A muiti-act N -person nonzero-sum game in extensive form with a fixed onder of play is called an N-person nonzero-sum feedback game Jin extensive form, if

  1. at the time of his act, each player has perfect information concerning the current level of play, i.e.,no information set contains nodes of the tree belonging to different levels of play,

  2. information sets of the first- acting player at every level of play are singletons, and the information sets of the other players at every level of play are such that none of them includes nodes corresponding to branches emanating from two or more different information sets of the first-acting player, i.e., each player knows the state of the game at every level of play.

    If, furthermore,

  3. the single-act games corresponding to the information sets of the first-acting player at each level of play are of the ladder-nested (respectively nested) type (cf. Def. 3.15), then the multi-act game is clled an N-person nonzer-sum fedack game in ladder nested (eseptivele, neste) extensive form.

文档信息

Search

    Table of Contents